2. Trigonometric Functions

1. If A(x, y) is any point on the terminal arm OQ such that $OA = r = \sqrt{x^2 + y^2}$ and $\angle POQ = q$ then:

$$\sin q = \frac{y}{r}$$

$$\cos q = \frac{x}{r}$$

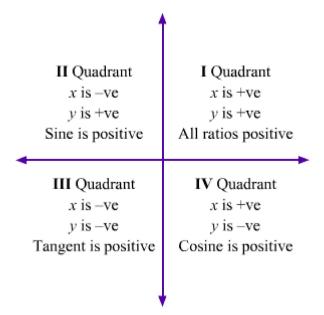
$$\tan q = \frac{y}{x}$$
, where $x \neq 0$

$$\csc q = \frac{r}{y}, \text{ where } y \neq 0$$

$$\sec q = \frac{r}{x}$$
, where $x \neq 0$

$$\cot q = \frac{x}{y}, \text{ where } y \neq 0$$

2. The signs of various trigonometric ratios in different quadrants are as follows:



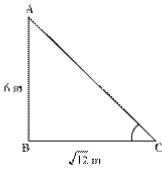
• Trigonometric Ratios of some specific angles

q	0	30°	45°	60°	90°
sin <i>q</i>	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
cosq	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
tanq	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	Not defined
cosecq	Not defined	2	$\sqrt{2}$	$\frac{2}{\sqrt{3}}$	1
secq	1	$\frac{2}{\sqrt{3}}$	$\sqrt{2}$	2	Not defined
cotq	Not defined	√3	1	$\frac{1}{\sqrt{3}}$	0

Example 1:

 \triangle ABC is right-angled at B and AB = 6 m, $\mathbf{BC} = \sqrt{12}$ m. Find the measure of \angle A and \angle C.

Solution:



$$AB = 6 m_{r}$$

$$BC = \sqrt{12} \ m = 2\sqrt{3} \ m$$

$$tan C = \frac{Opposite \ side}{Adjacent \ side} = \frac{AB}{BC} = \frac{6}{2\sqrt{3}} = \sqrt{3}$$

$$\left[\because \tan 60^\circ = \sqrt{3}\right]$$

Example 2:

Evaluate the expression

$$4(\cos^3 60^\circ - \sin^3 30^\circ) + 3(\sin 30^\circ - \cos 60^\circ)$$

Solution:

$$4\left(\cos^{3} 60^{\circ} - \sin^{3} 30^{\circ}\right) + 3\left(\sin 30^{\circ} - \cos 60^{\circ}\right)$$
$$= 4\left[\left(\frac{1}{2}\right)^{3} - \left(\frac{1}{2}\right)^{3}\right] + 3\left(\frac{1}{2} - \frac{1}{2}\right)$$
$$= 4 \times 0 + 3 \times 0 = 0 + 0 = 0$$

- Trigonometric Identities
 - $1 \cdot \cos^2 \mathbf{A} + \sin^2 \mathbf{A} = 1$
 - 2. $1 + \tan^2 A = \sec^2 A$
 - $3 \cdot 1 + \cot^2 A = \csc^2 A$

Example:

If $\cos \theta = \frac{5}{7}$, find the value of $\cot \theta + \csc \theta$

Solution:

We have,
$$\cos \theta = \frac{5}{7}$$

Now,
$$\sin^2 \theta + \cos^2 \theta = 1$$

$$\therefore \sin \theta = \sqrt{1 - \cos^2 \theta}$$

$$= \sqrt{1 - \left(\frac{5}{7}\right)^2}$$

$$=\sqrt{\frac{49-25}{49}}=\frac{2\sqrt{6}}{7}$$

$$\therefore \csc \theta = \frac{7}{2\sqrt{6}}$$

Also,
$$\cot \theta = \frac{\cos \theta}{\sin \theta}$$

$$=\frac{\frac{5}{7}}{\frac{2\sqrt{6}}{7}}=\frac{5}{2\sqrt{6}}$$

$$\therefore \cot \theta + \csc \theta = \frac{5}{2\sqrt{6}} + \frac{7}{2\sqrt{6}}$$

$$=\frac{12}{2\sqrt{6}}=\frac{6}{\sqrt{6}}\times\frac{\sqrt{6}}{\sqrt{6}}$$

$$=\sqrt{6}$$

- 1. For any angle θ , we have
- (i) $\sin(-\theta) = -\sin\theta$
- (ii) $\csc(-\theta) = -\csc \theta$
- (iii) $\cos(-\theta) = \cos\theta$

(iv)
$$\sec (-\theta) = \sec \theta$$

(v)
$$\tan (-\theta) = -\tan \theta$$

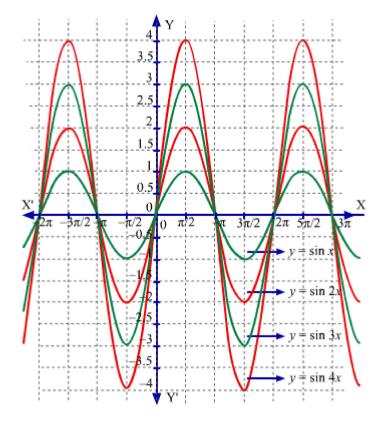
(vi) cot (
$$-\theta$$
) = $-\cot \theta$

• Domain and Range of trigonometric functions:

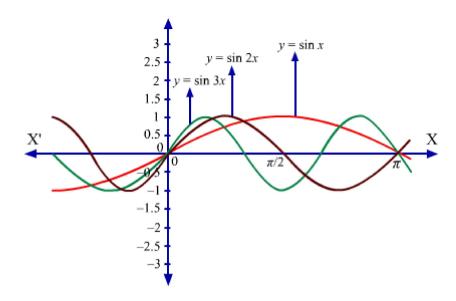
Trigonometric function	Domain	Range
$\sin x$	R	[-1, 1]
cos x	R	[-1, 1]
tan x	$\mathbf{R} - \left\{ X : X = \frac{(2n+1)\pi}{2}, n \in \mathbb{Z} \right\}$	R
cot x	$\mathbf{R} - \{x : x = n\pi, n \in \mathbf{Z}\}$	R
sec x	$\mathbf{R} - \left\{ x : x = \frac{(2n+1)\pi}{2}, n \in \mathbb{Z} \right\}$	R - [-1, 1]
cosec x	$\mathbf{R} - \{x : x = n\pi, n \in \mathbf{Z}\}$	R - [-1, 1]

Graphs of Transformed Trigonometric Functions:

• Graphs of functions of the type $y = a \sin x$:

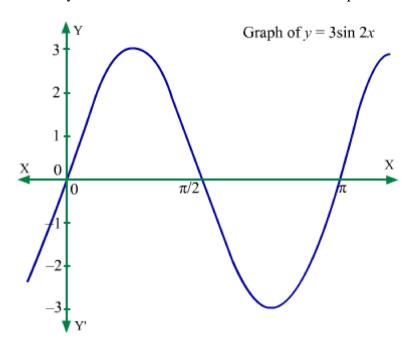


• Graphs of functions of the type $y = \sin bx$:

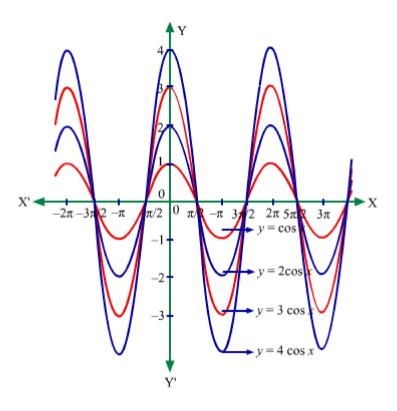


• Graphs of functions of the type $y = a \sin bx$:

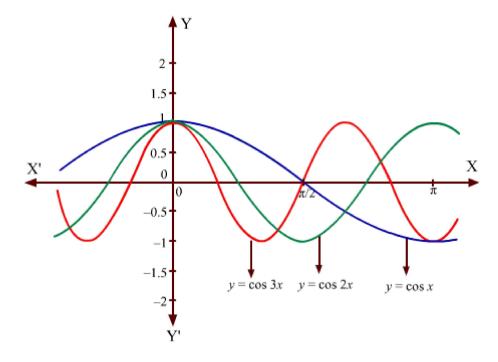
It is easy to understand such a function with the help of an example. Consider the function $y = 3 \sin 2x$.



• Graphs of functions of the type $y = a \cos x$:



• Graphs of functions of the type $y = \cos bx$:



• Graph of functions of the type $y = a \cos bx$:

It is easy to understand such a function with the help of an example. Consider the function $y = 3 \cos 2x$.

